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1. 프로젝트 개요

1.1. 미션 배경 및 목표

1.1.1. 정부나라장터 환경 분석

정부나라장터는 대한민국 정부 및 공공기관의 조달 업무를 전자화한 통합 전자조달

시스템입니다. 하루에도 수 백 건의 입찰공고가 게시되는데, 각 공고는 수 십에서 수 백

페이지에 이르는 방대한 분량의 제안요청서(RFP, Request for Proposal)를 포함하고 있습니다.

이러한 환경에서 입찰 참여 기업들은 하루에 수 백 건씩 쏟아지는 공고를 검토하고, 건당 수십

페이지 분량의 문서를 분석하는 데 막대한 시간과 인력을 투입해야 하는 어려움을 겪고

있습니다. 특히, 고객사별 맞춤 입찰 기회 탐색 및 요구사항 정확히 파악하는 과정에서

비효율성이 발생합니다.

1.1.2. 프로젝트 추진 배경

본 프로젝트는 기존 키워드 기반 검색 방식의 한계(문맥 이해 어려움, 복잡한 요구사항 파악

한계)를 극복하고 대량의 입찰 문서를 신속, 정확하게 분석하여 핵심 정보를 추출하여 사용자의

질문에 답변하기 위해 RAG(Retrieval-Augmented Generation) 기술을 도입했습니다.

RAG 기술은 벡터 임베딩(Vector Embedding)을 통해 문서의 의미를 수치화하고, 대규모

언어모델(LLM, Large Language Model)을 활용하여 자연어 질의에 대해 정확하고 맥락에

맞는 답변을 생성하는 효과적인 접근 방법입니다.

1.1.3. 핵심 해결 과제

본 프로젝트가 해결하고자 하는 핵심 과제는 다음과 같습니다:

1. 문서 형식 통합 처리: HWP 및 PDF 형식의 입찰 문서를 자동으로 수집하고 처리 가능한

형태로 변환

2. 의미 기반 검색 시스템: 변환된 문서를 효율적으로 검색할 수 있도록 벡터 임베딩

기반의 검색 시스템으로 사용자의 질의 의도를 정확히 파악하고, 방대한 문서 집합에서

관련성 높은 정보를 신속하게 추출.

3. LLM 기반 응답 시스템: 검색된 정보를 기반으로 자연스럽고 정확한 답변을 생성,

사용자가 복잡한 문서 구조를 직접 탐색하지 않아도 검색된 정보를 기반으로



자연스럽고 정확한 명확하고 구체적인 답변을 제공함과 동시에 검색 결과에 대한 출처

정보(문서명, 페이지 번호)를 제공하여 답변의 신뢰성을 검증 가능

4. 사용자 친화적 인터페이스: 복잡한 기술적 구조를 감추고 누구나 쉽게 사용할 수 있는

사용자 친화적인 인터페이스 제공, 연속적인 질의응답 및 이전 대화 컨텍스트 유지를

통해 자연스러운 정보 탐색 가능

1.2. 프로젝트 정보

1.2.1. 프로젝트명 및 팀 구성

● 프로젝트명: RAG 기반 정부나라장터 입찰공고 분석 시스템

● 팀명: PEP(Public E-Procurement Partner)

● 팀 구성 및 역할:

● 신승목 (데이터 엔지니어): 문서 수집 및 원본 전처리, PDF/HWP 파일을

Markdown 형식으로 변환, 데이터베이스 파이프라인 구축.

● 김명환 (머신러닝 엔지니어): 임베딩 처리, Markdown 문서를 벡터 임베딩으로

변환, FAISS(Facebook AI Similarity Search) 인덱스 저장 시스템 개발.

● 이민규 (AI 리서처): LLM 기반 정보 추출 및 요약 시스템 개발, 프롬프트

엔지니어링, RAG 평가 시스템 구축.

● 오형주 (프론트엔드 엔지니어): Streamlit 기반 사용자 인터페이스 개발 및 전체

시스템 통합.

1.2.2. 개발 기간 및 일정

● 개발 기간: 2025 년 11 월 10 일 ~ 11 월 28 일 (총 3 주)

3 주차 11 월

24 일~28 일

최적화 및

마무리 단계

전체 통합 테스트, 성능 평가 및 최적화, 문서화,

발표 자료 준비, 최종 발표.

2 주차 11 월

17 일~21 일

핵심 기능 개발

단계

문서 수집/변환 모듈, 임베딩 처리 모듈, LLM 챗봇

모듈, UI 통합 모듈 병렬 개발, 모듈 통합 작업,

Week 2 통합 완료.

1 주차 11 월

10 일~14 일

기반 구축 단계 개발 환경 설정, 더미 데이터 생성, DB 스키마 구축,

UI 프로토타입 개발, Week 1 통합 테스트 완료.

주차 기간 단계 주요 활동

1.2.3. 기술 스택 개요

본 프로젝트는 Python 기반의 AI 및 데이터 처리 기술을 활용했습니다.

● 문서 처리: PyMuPDF, pymupdf4llm (PDF to Markdown), 자체 개발 helper-hwp

라이브러리 (HWP to Markdown).



● 데이터 저장: SQLite (메타데이터, 채팅 이력).

● 임베딩/검색: OpenAI text-embedding-3-small 모델, FAISS (고속 유사도 검색),

LangChain (청킹, 벡터스토어 관리).

● LLM 계층: OpenAI GPT 시리즈 모델 (gpt-5-mini, gpt-4o), ConversationChain,

ConversationSummaryMemory (대화 컨텍스트 관리).

● 사용자 인터페이스: Streamlit 프레임워크.



1.3. 시스템 아키텍처

1.3.1. 전체 구조도

본 시스템은 계층적 구조로 설계되었으며, `` 각 계층은 명확히 분리된 책임을 가집니다.

● 사용자 계층: Streamlit 기반 웹 인터페이스, 문서 업로드 및 질문 입력.

● 애플리케이션 계층: 사용자 요청을 받아 비즈니스 로직 모듈로 라우팅 (app.py).

● 비즈니스 로직 계층: 문서 변환, 임베딩 생성, 검색, 응답 생성 등 핵심 로직 처리.

● 데이터 접근 계층: 데이터베이스 CRUD 연산 및 벡터 인덱스 관리 추상화.

● 저장 계층: 영구 데이터 저장 (SQLite, FAISS 파일).



1.3.2. 데이터 파이프라인 흐름

시스템의 데이터 처리는 4 단계로 구성된 파이프라인으로 이루어집니다.

핵심 특징:

● 문서 수집: 파일 해시 기반 중복 검사를 수행하며, HWP 파일은 helper_hwp

라이브러리의 hwp_to_markdown 메서드를 사용하여 Markdown 형식으로 변환.

● 임베딩 생성: 문서는 RecursiveCharacterTextSplitter 로 청킹되며, OpenAI 의 text-

embedding-3-small 모델을 통해 1536 차원 벡터로 변환되어 통합 FAISS 인덱스에 저장.

● 검색: 사용자 질의를 임베딩으로 변환 후, FAISS 에서 L2 거리 기반의 유사도 검색을

수행.

● 응답 생성: 검색된 청크를 컨텍스트로 사용하여 LLM 이 자연어 답변을 생성하며,

질의/답변 및 검색된 청크 정보는 ChatHistoryDB 에 저장.



1.3.3. 주요 기술 구성 요소

UI Module 사용자 인터페이스 Streamlit (세션 상태 관리: st.session_state),

@st.cache_resource 를 통한 DB 인스턴스

캐싱.

ChatHistoryDB 대화 이력 관리 SQLite, 세션 기반 그룹화, 검색된 청크

정보(JSON) 저장.

LLMProcessor 응답 생성 OpenAI GPT 모델, LangChain

ConversationChain 및

ConversationSummaryMemory 로 컨텍스트

유지.

Retrieval 검색 수행 청크 기반 검색, 페이지 기반 검색 모드

지원, 메타데이터 필터링.

VectorStoreManager 벡터 인덱스 관리 FAISS (LangChain 래퍼), IndexFlatL2 기반

검색, Document.metadata 에 파일명,

페이지 번호 등 통합 관리.

EmbeddingProcessor 청킹 및 임베딩 생성 3 단계 전처리 파이프라인,

RecursiveCharacterTextSplitter, OpenAI

text-embedding-3-small.

DocumentProcessor 문서 변환 PyMuPDF, pymupdf4llm, helper-hwp

(HWP to Markdown), 페이지 마커 삽입.

Config 중앙 집중식 설정

관리

config.json 파일, 싱글톤 패턴.

모듈 역할 핵심 기술 및 특징



1.4. 핵심 컴포넌트 상세

1.4.1. 파일 해시 기반 중복 제거

목적: 동일 파일 재처리를 방지하고, 저장 공간 및 처리 시간을 절약.

메커니즘: 입력 파일의 SHA-256 해시값을 계산하여 TB_DOCUMENTS 테이블에 저장된 기존

문서와 비교.

1.4.2. 통합 FAISS 인덱스 및 메타데이터 관리

특징:

● 단일 인덱스: 모든 문서의 임베딩을 하나의 FAISS 인덱스(vectorstore.faiss)에 저장하여

전체 문서를 대상으로 통합 검색.

● 메타데이터 통합: 벡터 임베딩과 함께 파일 해시, 파일명, 시작 페이지, 종료 페이지 등

모든 출처 정보가 LangChain Document.metadata 에 통합되어 저장.

메타데이터 구조:

이 구조를 통해 별도의 DB 조회 없이 검색 결과만으로 정확한 출처 추적이 가능합니다.

1.4.3. 유사도 점수 (거리 기반)

검색 결과는 FAISS 의 L2 거리(Euclidean distance) 값을 그대로 반환합니다.

여기서 A 는 쿼리 벡터, B 는 청크 벡터이며, 거리가 작을수록 유사도가 높음을 의미합니다. 이

원본 거리 값을 사용함으로써 정규화로 인한 정보 손실 없이 벡터 공간에서의 실제 거리를

반영합니다.

2.0 이상 낮은 유사도

1.0 ~ 2.0 중간 유사도

0.5 ~ 1.0 높은 유사도

0.1 ~ 0.5 매우 높은 유사도

0.0 완전 일치 (가장 유사)

Distance 해석



1.4.4. 검색된 청크 JSON 저장

LLM 이 답변을 생성하는 데 사용한 검색된 청크 정보는 retrieved_chunks 컬럼에 다음과 같은

JSON 구조로 저장되어 출처를 추적합니다.

[

{

"chunk_text": "...",

"file_name": "document.pdf",

"file_hash": "abc123...",

"start_page": 5,

"distance": 0.176

},

...

]



2. 데이터 수집 및 전처리 (신승목)

2.1. 문서 수집 전략

2.1.1. PDF 및 HWP 파일 수집 프로세스

본 프로젝트의 데이터 수집은 정부나라장터에서 제공하는 입찰 공고 문서를 공공데이터포털의

입찰공고목록정보조회 API 를 활용하여 체계적으로 자동화합니다.

2.1.2. 파일 해시 기반 중복 검사

대량 문서 처리에 대비하여 중복 처리를 방지하기 위해 SHA-256 해시 알고리즘을 기반으로

중복 문서를 감지하고 제거하는 기능을 구현하였습니다.

SHA-256 해시: 입력 파일 내용에 기반하여 64 자리 16 진수 문자열을 생성하며, 파일의 고유한

지문 역할을 수행합니다. 파일명이나 메타데이터가 달라도 내용이 동일하면 같은 해시값을

갖습니다.

중복 검사 프로세스: 새 문서 파일 입력 시, DocumentProcessor 가 해시값을 계산하고, 이

해시값이 DocumentsDB 에 이미 존재하는 경우 중복으로 판단하여 Markdown 변환 및 DB

저장 작업을 건너뜁니다.

1. API 호출: 공공데이터포털 API 를 호출하여 최신 공고

목록을 조회합니다.

2. 메타데이터 추출: 응답으로 받은 공고번호, 공고명,

발주기관, 입찰마감일, 첨부파일 URL 등의 메타데이터를

확보합니다.

3. 원본 파일 다운로드: 첨부파일 URL 을 통해 제안요청서

원본 파일(PDF, HWP)을 다운로드합니다.

4. 마크다운 변환 및 저장: 다운로드된 PDF 파일은

PyMuPDF 라이브러리를, HWP 파일은 자체 개발

라이브러리를 이용하여 Markdown 형식으로 변환한 후

DB 에 저장합니다.



장점:

1. 파일명과 무관하게 동일 내용의 문서를 정확히 식별합니다.

2. 데이터베이스 인덱스를 활용하여 매우 빠른 중복 여부 판단이 가능합니다.

3. 해시값은 파일 크기와 무관하게 64 자리로 고정되어 저장 공간을 효율적으로

사용합니다.

중복 검출 사례: 실제 수집된 문서에서 두 건의 중복 사례가 발견되었으며, 파일명은 다르지만

내용이 동일함을 해시값을 통해 확인했습니다. 이 메커니즘을 통해 불필요한 저장 공간 사용,

중복 임베딩 벡터 생성, 검색 결과의 중복 등의 문제를 사전에 방지할 수 있습니다.

2.1.3. 메타데이터 추출 및 관리

문서 처리 과정에서 원본 파일의 메타데이터를 추출하고 관리하는 것은 향후 검색 및 필터링

기능의 핵심 기반입니다.

메타데이터 구분:

● 파일 수준 메타데이터: 파일 해시값, 파일명, 파일 크기, 총 페이지 수, 생성 시각, 수정

시각 등 물리적 속성을 나타내며, DocumentsDB 의 TB_DOCUMENTS 테이블에

저장됩니다. file_hash 를 기본 키(Primary Key)로 사용합니다.

● 문서 메타데이터: PDF 표준에 따른 제목, 저자, 주제 등이 있으나, 나라장터 공고

문서에서는 일관성이 낮아 파일명에서 발주기관, 사업명, 사업 유형 등의 정보를

추론하여 보완적으로 활용합니다.

페이지 수 관리:

● PDF: PyMuPDF 의 page_count 속성을 통해 전체 페이지 수를 확인합니다.

● HWP: 한글 문서의 특성상 페이지 정보가 없어, 최소 전처리 후의 내용을 기준으로

40 줄마다 임의의 페이지 정보를 추가하도록 구현하였습니다.

시각 정보: 생성 시각과 수정 시각은 KST (Korean Standard Time) 기준으로 기록되며,

Python 의 datetime 모듈과 pytz 라이브러리를 사용하여 UTC 시각을 KST 로 변환하고,

데이터베이스에는 ISO 8601 형식의 문자열로 저장됩니다.

2.2. 원본 전처리

2.2.1. Markdown 변환 (pymupdf4llm, helper_hwp)

RAG 시스템 구축을 위해 복잡한 구조의 원본 문서를 기계 처리가 용이하도록 Markdown

텍스트로 변환합니다. Markdown 은 문서의 구조(헤더, 리스트, 테이블 등)를 표현하는 경량

마크업 언어로, 원본 문서의 계층 구조와 의미를 최대한 보존합니다.



PDF to Markdown: pymupdf4llm 라이브러리를 사용합니다. 이는 LLM(Large Language

Model) 친화적인 Markdown 변환에 최적화되어 있으며, 다음과 같은 고급 기능을 제공합니다.

1. 문서의 논리적 구조를 분석하여 적절한 Markdown 헤더 레벨을 할당합니다.

2. 테이블 구조를 인식하여 Markdown 테이블 문법으로 변환합니다.

3. 리스트 항목을 순서 있는 리스트와 순서 없는 리스트로 구분합니다.

변환은 페이지 단위로 수행되며, pymupdf4llm.to_markdown 함수를 통해 각 페이지의

레이아웃을 분석하고 Markdown 으로 변환합니다.

HWP to Markdown: 기존 라이브러리의 텍스트 처리 한계를 극복하고자 HWP 문서의

텍스트와 표 내용을 파싱하여 마크다운으로 변환하는 라이브러리 (helper_hwp)를 직접

개발하여 활용하였습니다.

예외 처리: 스캔된 이미지로만 구성된 페이지, 빈 페이지, 암호화되거나 손상된 페이지에

대해서는 특수 마커 (ERROR_PAGE_MARKER, EMPTY_PAGE_MARKER)를 삽입하고 처리하지

않고 건너뛰어 전체 문서 처리가 중단되는 것을 방지합니다.

2.2.2. DocumentProcessor 기반 최소 전처리

Markdown 으로 변환된 직후의 텍스트에서 불필요한 요소를 제거하는 최소 전처리를

수행합니다. 이 단계는 원본 텍스트의 내용과 구조를 보존하며 형식적인 문제만을 해결하는

것을 목표로 합니다.

주요 전처리 작업:

1. 공백 및 탭의 정규화 (Normalization): 연속된 공백이나 탭(r'[ \t]+')을 단일 공백으로

변환하여 불필요한 토큰 낭비를 방지합니다.

2. 연속된 개행 축소: 세 번 이상 연속된 개행(r'\n{3,}')을 두 번의 개행으로 축소하여 문단

구분은 유지하되 과도한 빈 공간을 제거합니다.

3. 각 라인의 앞뒤 공백 제거: 각 줄의 strip 메서드를 호출하여 라인 시작이나 끝의

불필요한 공백을 제거합니다.

분리 전략: 텍스트의 의미나 구조를 변경할 수 있는 작업(Markdown 요소 제거, HTML 태그

제거 등)은 이 단계에서 수행하지 않고, 다음 단계인 EmbeddingProcessor 의 전처리에서

수행하도록 분리하여 원본 데이터를 최대한 보존합니다.

2.2.3. 페이지 마커 삽입 전략

RAG 시스템의 검색 결과에 원본 문서의 페이지 정보를 제공하여 사용자 경험을 향상시키기

위해 페이지 마커를 삽입합니다.



마커 형식: 페이지 마커의 형식은 "--- 페이지 N ---"이며, 정규표현식으로 쉽게 감지할 수

있도록 설계되었습니다.

페이지 마커의 역할:

1. 청킹 단계에서의 페이지 단위 분할: EmbeddingProcessor 는 페이지 마커를 기준으로

텍스트를 분리하여 청크 생성을 방지하고, 각 청크가 속하는 페이지 범위를 명확히

추적할 수 있게 합니다.

2. 검색 결과의 출처 표시: 각 청크의 메타데이터에 start_page 와 end_page 정보가

포함되어, LLM 응답 시 *"이 정보는 공고문.pdf 의 15 페이지에서 17 페이지에

있습니다"*와 같은 구체적인 출처를 제공할 수 있습니다.

특수 마커: 오류 발생 페이지는 ERROR_PAGE_MARKER ("--- [오류페이지] ---")로, 텍스트가

없거나 임계값 이하의 텍스트만 포함된 페이지는 EMPTY_PAGE_MARKER ("--- [빈페이지] ---

")로 표시하며, 이들은 임베딩 단계에서 건너뛰어집니다.

삽입 위치: 마커는 각 페이지 내용의 시작 부분에 삽입되며, 내용과 분리되도록 전후에 개행이

추가됩니다 (예: "--- 페이지 5 ---\n\n 사업 개요").



2.3. 데이터베이스 설계

2.3.1. documents_db 스키마

문서 메타데이터 관리를 위해 SQLite 데이터베이스를 사용하는 DocumentsDB 클래스가

설계되었습니다.

TB_DOCUMENTS 테이블 스키마:

updated_at TIMESTA

MP

DEFAULT (KST) 레코드 최종 수정 시각

created_at TIMESTA

MP

DEFAULT (KST) 레코드 생성 시각

text_content TEXT NULL 허용 변환된 Markdown 텍스트 내용

file_size INTEGER NOT NULL 원본 파일 크기 (바이트)

total_pages INTEGER NOT NULL 원본 문서의 총 페이지 수

file_name TEXT NOT NULL 원본 파일 이름

chunk_index INTEGER PRIMARY KEY 텍스트 콘텐츠 분할 저장 인덱스 (0~4)

file_hash TEXT PRIMARY KEY SHA-256 해시값 (64 자리)

컬럼명 타입 제약 조건 설명

저장 방식: text_content 는 대용량 텍스트 저장을 위해 설계되었으나, DB 저장 용량 제한을

우회하기 위해 문서 파일을 처리하여 생성한 마크다운을 5 조각으로 분할하여 chunk_index 에

맞게 저장합니다. file_hash 를 호출하면 해당 인덱스에 맞게 text_content 가 연결되어 전체

내용이 반환되도록 메서드를 구현하였습니다.

2.3.2. 파일 메타데이터 관리

DocumentsDB 클래스는 파일 메타데이터에 대한 CRUD(Create, Read, Update, Delete) 작업을

추상화된 인터페이스로 제공합니다.

주요 메서드:

● insert_text_content(): 문서 정보 및 텍스트 콘텐츠를 TB_DOCUMENTS 테이블에

삽입합니다.



● get_document_by_hash(): file_hash 를 기준으로 문서 정보를 조회하며, text_content 를

chunk_index 순서대로 합쳐서 반환합니다. 중복 검사 단계에 사용됩니다.

● get_document_stats(): 총 파일 수, 총 페이지 수, 총 파일 크기 등의 통계 정보를

계산하여 반환합니다.

● search_documents(): 파일명 또는 file_hash 로 문서를 검색합니다.

모든 DB 작업은 context manager 패턴을 사용하여 트랜잭션을 관리하며, 리소스 누수를

방지하고 코드의 안전성을 높입니다.

2.3.3. 재현성 보장 메커니즘

시스템 품질 평가 및 개선을 위해 동일한 입력에 대해 동일한 결과를 재현할 수 있도록 파일

해시 기반의 재현성 보장 메커니즘을 설계했습니다.

● 파일 해시: 문서 내용의 지문으로 작용하여, 동일 문서는 시스템에 단 한 번만 저장 및

처리되도록 합니다.

● Markdown 원본 보존: Markdown 변환 결과는 text_content 컬럼에 저장되어 원본

데이터로서 보존되므로, 임베딩 전략이 변경되더라도 다시 읽어와 재처리가 가능합니다.

● 타임스탬프 추적: created_at 및 updated_at 타임스탬프를 통해 문서의 생명주기를

추적하고, 증분 업데이트(Incremental Update)를 지원합니다.

2.4. 중복 데이터 분석 결과

2.4.1. 해시 기반 중복 검출

프로젝트 진행 중 수집한 정부나라장터 공고 문서에 대해 해시 기반 중복 검사를 수행한 결과,

두 건의 중복 사례가 발견되었습니다.

● 사례 1: 해시값 20cdb1e...0a7 의 "BioIN 의료기기산업..." 파일과 "한국보건산업진흥원..."

파일은 이름은 다르지만 내용이 동일했습니다.

● 사례 2: 해시값 fe07779...3e8 의 "국가과학기술지식정보서비스..." 파일과

"한국한의학연구원..." 파일도 내용이 동일했습니다.

이러한 중복은 유사한 시스템 구축 사업이 여러 기관에 발주되면서 템플릿이나 표준

제안요청서를 기반으로 작성되어 발생하는 나라장터 공고의 특성을 반영합니다. 중복 검출

메커니즘을 통해 이러한 문서들은 한 번만 처리됩니다.

2.4.2. 파일 매핑 관계

중복으로 판단된 파일 쌍은 파일명이나 일부 메타데이터는 다르지만 핵심 내용은 동일하여

같은 해시값을 가집니다. 이 매핑 정보는 중복 검사 로그에 기록되어, 나중에 특정 파일을

검색할 때 실제로 저장된 버전을 안내할 수 있습니다.



2.4.3. 데이터 품질 개선 효과

중복 데이터 제거는 전체 시스템의 품질을 다각도로 개선합니다.

● 저장 공간 절약: 중복 문서 제거로 데이터베이스 크기가 감소합니다. 본 프로젝트에서는

원본 파일 기준 162MB 중 1.6MB(1%)를 절약했고, DB 파일 기준 20.4 MB(원본 데이터

중 HWP 를 PDF 로 변환한 것 기준 100 개)에서 17.0 MB(원본 데이터 사용, 98 개

저장)로 17% 감소했습니다.

● 비용 절감: 동일한 문서를 중복 처리하지 않아 임베딩 생성 API 호출 비용(OpenAI

API 는 토큰 수에 비례 과금)이 절감됩니다.

● 검색 품질 향상: FAISS 인덱스 크기 감소로 검색 속도가 향상되고, 중복 내용이 제거되어

상위 검색 결과의 다양성이 높아집니다.

● 사용자 경험 및 신뢰성: 검색 결과에 동일한 내용이 여러 파일명으로 나타나는 혼란을

방지하고 출처의 신뢰성을 향상시킵니다.

2.5. 나라장터의 공고 문서 파일을 DB 에 저장

공공데이터포털(data.go.kr)에서 받은 API Key 와 검색할 시작일/종료일을 입력하면, 해당

기간의 입찰 공고 정보를 조회하여 첨부 파일을 다운로드하고, 앞서 설명된 전처리 과정을 거쳐

DB 에 저장합니다.

2.5.1. Service Key 검증 및 입찰 공고 정보 조회

APP UI 상에서 Service Key, 시작 일자, 종료 일자를 입력받아 api_url 을 생성하여

조달청_나라장터 입찰공고 서비스의 "getBidPblancListInfoCnstwk" 항목에 요청합니다.

네트워크 문제 대비를 위해 10 초의 타임아웃을 설정했습니다.

2.5.2. API 응답 중 첨부 문서를 받아서 DB에 저장

API 응답에서 첨부파일 URL 만을 추출하고 중복 제거 및 유효성 검사를 수행합니다.

다운로드 및 처리:

1. tempfile.mkdtemp() 함수를 통해 중복되지 않는 임시 디렉토리를 생성하고 파일을

저장합니다.

2. 다운로드 요청 시 30 초의 타임아웃을 설정하고, 오류 발생 시 다음 파일을 진행하도록

했습니다.

3. 다운로드가 완료되면 HWP, PDF 처리 모듈을 이용하여 마크다운으로 변환합니다.

4. File_hash 기준 중복 검사를 거쳐 중복되지 않은 내용을 DB 에 추가합니다.

5. DB 저장이 완료된 후 임시 디렉토리에 다운로드 받았던 파일들을 제거합니다.



3. 임베딩 처리 및 벡터 저장 (김명환)

3.1. 임베딩 전처리 전략 (Embedding Preprocessing Strategy)

RAG (Retrieval-Augmented Generation) 시스템의 성능을 결정짓는 핵심 요소 중 하나는 문서

전처리의 품질입니다. 본 시스템은 원본 보존과 처리 최적화라는 두 가지 목표를 균형 있게

달성하기 위해 3 단계 전처리 파이프라인을 설계하였습니다.

3.1.1. 3 단계 전처리 파이프라인 (Three-Stage Preprocessing Pipeline)

3 차

(페이지별)

페이지 단위

분할 후

EmbeddingPro

cessor.clean_p

age_text

최종 정제 페이지 마커

제거, 최종 공백

정리

청크 텍스트

2 차 (최대) 청킹 직전 EmbeddingPro

cessor.clean_m

arkdown_text

임베딩

품질

최적화

공격적인

마크업/노이즈

제거, 보호 블록

마스킹/복원

임베딩 입력

1 차 (최소) HWP, PDF

변환 직후

DocumentProc

essor.clean_ma

rkdown_text

원본 보존 형식 문제 해결

(공백, 개행

축소)

DocumentsDB

.text_content

단계 수행 시점 주체 (메서드) 목표 주요 작업 저장 위치

이 3 단계 파이프라인 구조는 다음과 같은 장점을 제공합니다:

● 원본 보존: 원본 데이터는 최소 전처리만 거친 상태로 보존되어 다른 전처리 방식 실험

시 시작점으로 활용 가능합니다.

● 유연성: 최대 전처리는 임베딩 직전에 수행되므로 설정 변경 시 PDF 변환을 다시 할

필요가 없습니다.

● 기능 분리: 페이지별 정제는 청킹 이후에 수행되므로 페이지 마커를 활용한 정확한

분할이 가능합니다.



3.1.2. 보호 블록 마스킹 기법 (Protected Block Masking Technique)

Markdown 전처리 과정에서 코드 예제, 수학 공식, 다이어그램 등 중요한 정보가 손실되는 것을

방지하기 위해 보호 블록 마스킹 (Masking) 기법이 사용됩니다.

1. 식별 및 치환: 정규표현식을 사용하여 보호할 블록을 식별하고, 각 블록을 고유한

플레이스홀더로 치환합니다.

● 코드 블록: 4 개 백틱 (...) 또는 3 개 백틱 (...) 블록을 XPROTECTEDXCODE4XnX

또는 XPROTECTEDXCODE3XnX 형식의 플레이스홀더로 치환합니다.

● 수식 블록: 이중 달러 기호 ($$...$$)의 블록 수식 및 단일 달러 기호 ($...$)의

인라인 수식을 각각 XPROTECTEDXMATHXnX, XPROTECTEDXINLINEXnX

형식으로 치환합니다.

● 페이지 마커: ERROR_PAGE_MARKER, EMPTY_PAGE_MARKER, 페이지 번호

마커를 XPROTECTEDXMARKERXnX 형식으로 치환하여 페이지 분할 단계까지

안전하게 전달합니다.

2. 전처리 수행: 마스킹 이후 일반적인 전처리 작업이 수행됩니다. 플레이스홀더는

영문자와 숫자로만 구성되어 전처리 작업에 영향을 받지 않습니다.

3. 복원: 전처리가 완료되면 protected_blocks 및 protected_markers 딕셔너리를 역순으로

순회하며 플레이스홀더를 원본 내용으로 치환합니다. 역순 처리는 중첩 블록 및 인덱스

충돌을 방지합니다.

3.1.3. Markdown 요소 제거 및 정제 (Markdown Element Removal and

Normalization)

보호 블록 마스킹 완료 후, 문서의 의미를 담고 있는 텍스트만 남기기 위해 형식을 위한

마크업을 제거하고 텍스트를 정제합니다.

주요 정제 작업은 다음과 같습니다:

● 탈출문자 처리: 백슬래시로 이스케이프된 특수 문자를 원래 문자로 복원.

● HTML 태그 제거: <[^>]+> 패턴으로 <사업<div>개요</div>>를 사업 개요와 같이

공백으로 치환.

● 이미지 제거: Markdown 이미지 문법 ![대체텍스트](URL)을 찾아 삭제.

● 링크 제거: [나라장터](https://g2b.go.kr)를 나라장터로 변환하여 URL 만 제거하고

텍스트 유지.

● 강조 기호 제거: 볼드체 (...), 이탤릭체 (*...*), 취소선 (~~...~~)의 마크업 제거.

● 헤더 제거: # 기호와 뒤따르는 공백 제거 (예: ## 사업 개요 -> 사업 개요).

● 인용구 제거: 라인 시작 부분의 꺾쇠 기호 (>) 제거.

● 리스트 마커 제거: 순서 있는/없는 리스트의 마커 제거.

● 공백 정리: 연속된 세 줄 이상의 개행을 두 줄로 축소, 연속된 공백/탭을 단일 공백으로

변환, 빈 테이블 행 및 긴 점선 축약.

이러한 정제 작업의 결과로 문서는 순수한 텍스트 형태가 되어 임베딩 모델 (embedding

model)이 의미에 집중할 수 있게 됩니다.



3.2. 청킹 전략 (Chunking Strategy)

문서를 적절한 크기의 청크 (chunk)로 분할하는 것은 RAG 시스템에서 검색 정밀도와 문맥

유지의 균형을 맞추는 핵심 과제입니다.

3.2.1. RecursiveCharacterTextSplitter 설정

LangChain 의 RecursiveCharacterTextSplitter 를 사용하여 균형 잡힌 청킹을 구현했습니다. 이

분할기는 큰 구분자부터 작은 구분자로 재귀적으로 텍스트를 분할합니다.

● 구분자 (Separators): 이중 개행 (\n\n), 단일 개행 (\n), 공백 ( ), 빈 문자열 ( ) 순서로

우선순위가 정의되어 문단 -> 문장 -> 단어 -> 문자 단위 분할을 시도합니다.

● 청크 크기 (chunk_size): 기본값은 1500 입니다. CHUNKING_MODE 가 token 으로

설정되어 토큰 수 (token count)를 기준으로 합니다.

● 청크 중복 (chunk_overlap): 기본값은 300 입니다. 인접 청크 간 중복을 허용하여 청크

경계에서의 문맥 단절을 방지합니다.

● 길이 함수 (length_function): 토큰 기반 청킹을 위해 tiktoken 라이브러리를 사용하는

커스텀 함수를 제공하여 정확한 토큰 수 측정을 보장합니다.

3.2.2. 페이지 단위 분할 방식 (Page-Based Splitting Method)

청킹 과정에서 페이지 경계를 고려하여 출처 추적 (source tracking) 및 사용자 경험을

개선합니다.

1. 페이지 분리: DocumentProcessor 가 삽입한 페이지 마커 (예: --- 페이지 1 ---)를

기준으로 전체 텍스트를 페이지 단위 텍스트 리스트로 분할합니다.

2. 버퍼 누적: 단일 페이지가 CHUNK_SIZE 보다 작은 경우가 많으므로, 버퍼 (Buffer)를

사용하여 인접 페이지의 텍스트를 누적하고 시작/종료 페이지 번호를 기록합니다.

3. 청킹 트리거: 버퍼 크기가 CHUNK_SIZE 이상이 되거나 마지막 페이지에 도달하면

청킹이 트리거됩니다.

● 단일/병합 청크: 버퍼 토큰 수가 CHUNK_SIZE 이하인 경우 버퍼 전체를 단일

청크로 추가하고 chunk_type 을 single 또는 merged 로 설정합니다.

● 분할 청크: 버퍼 토큰 수가 CHUNK_SIZE 를 초과하면

RecursiveCharacterTextSplitter 를 사용하여 버퍼를 분할하고 chunk_type 을

split 으로 설정합니다.

4. 페이지 범위 기록: 각 청크의 메타데이터에 start_page 와 end_page 필드를 저장하여

검색 결과를 사용자에게 제시할 때 출처를 명시합니다.



3.2.3. 메타데이터 보존 전략 (Metadata Preservation Strategy)

각 청크에는 검색 및 추적을 용이하게 하는 풍부한 메타데이터 (metadata)가 첨부됩니다.

created_at 청크 생성 시각 (ISO 8601) 시간 기반 필터링 및 데이터

갱신 분석

embedding_version 사용된 임베딩 모델 이름 모델 변경 시 추적 및

마이그레이션

config_* 청크 생성 당시의 설정값들 나중에 동일한 조건으로 청크

재생성

chunk_hash 청크 텍스트 내용의 SHA-256

해시값

증분 업데이트 시 내용 변경

감지

embedding_config_ha

sh

파일 해시와 임베딩 설정의 통합

해시값

재현성 보장 및 재임베딩

필요성 자동 판단

chunk_index 동일 파일 내 청크의 순서 인덱스 청크 정렬, 인접 청크 검색

chunk_type 청크 생성 방식 (single, merged, split) 청킹 전략 분석 및 개선

start_page/end_page 청크가 속한 페이지 범위 원본 문서의 정확한 위치 추적

file_name 사용자 친숙한 파일 이름 검색 결과 표시

file_hash 원본 파일의 SHA-256 해시값 특정 파일의 청크 식별, 파일

단위 벡터 삭제

메타데이터 필드 설명 활용 목적

메타데이터는 JSON 직렬화가 가능한 형태로 저장되어 LangChain 의 Document 객체에

포함되며, VectorStoreManager 는 이를 FAISS 인덱스와 함께 저장하고 검색 시 반환합니다.



3.3. 벡터 임베딩 (Vector Embedding)

벡터 임베딩은 텍스트를 고차원 벡터 공간의 점으로 변환하여 의미가 유사한 텍스트가 가까운

위치에 놓이게 하는 과정입니다.

3.3.1. OpenAI text-embedding-3-small 모델

본 시스템에서는 OpenAI 의 최신 임베딩 모델인 text-embedding-3-small 을 사용합니다.

컨텍스트 길이 최대 8191 토큰 처리 가능

다국어 지원 한국어를 포함한 100 개 이상의 언어 지원

처리 속도 빠른 API 응답 시간, 배치 처리 지원

비용 효율성 백만 토큰당 0.02 달러 (이전 모델 대비 5 배 저렴)

벡터 차원 1536 차원

특징 설명

임베딩 생성 프로세스는 LangChain 의 OpenAIEmbeddings 클래스를 통해 추상화되며,

EMBEDDING_BATCH_SIZE (기본값 100) 설정에 따라 여러 청크를 하나의 API 호출로 처리하는

배치 처리 (Batch Processing)를 사용하여 효율성을 높입니다.

3.3.2. 임베딩 설정 해시 (embedding_config_hash)

임베딩 벡터의 재현성 (reproducibility)을 보장하고 설정 변경을 추적하기 위해

embedding_config_hash 메커니즘이 도입되었습니다. 이는 파일 해시와 임베딩 관련 모든

설정을 결합하여 계산한 SHA-256 해시값입니다.

● 재현성 보장: 청크 내용, 임베딩 모델, 청킹/전처리 설정 등 벡터 생성에 영향을 미치는

모든 요소가 포함되므로, 설정이 변경되면 해시값이 달라져 재임베딩이 필요함을 자동

판단합니다.

● 활용: VectorStoreManager 는 이 값을 비교하여 중복 방지, 자동 재임베딩, 실험 추적

등에 사용합니다.



3.3.3. 재현성 보장 메커니즘 (Reproducibility Mechanism)

버전 관리 embedding_version 임베딩 모델 업데이트 시

재임베딩 필요성 판단

메타데이터 수준 config_* 필드 청크 생성 당시의 설정을

완전히 기록

청크 수준 chunk_hash 동일한 텍스트 -> 동일한

임베딩 벡터 (OpenAI 모델은

결정론적)

설정 수준 embedding_config_hash 동일한 설정 -> 동일한 청크

생성 (Config 파일로 설정

복원 가능)

파일 수준 file_hash 동일한 PDF 파일 -> 동일한

해시값 및 text_content

재현성 수준 핵심 메커니즘 보장 내용

3.4. FAISS 벡터 저장소 (FAISS Vector Store)

FAISS (Facebook AI Research Similarity Search)는 고성능 벡터 유사도 검색 라이브러리로

대규모 RAG 시스템에 적합합니다.

3.4.1. 인덱스 구조 및 관리 (Index Structure and Management)

● 인덱스 타입: IndexFlatL2 인덱스를 사용합니다. 이는 L2 거리 (Euclidean distance)

기반의 정확한 최근접 이웃 검색 (Exact Nearest Neighbor Search)을 수행하여 검색

결과의 정확도를 보장합니다.

● LangChain 래퍼: LangChain 의 FAISS 클래스를 사용하여 FAISS 인덱스 외에도

docstore (Document 객체 저장 딕셔너리)와 index_to_docstore_id (FAISS 인덱스와

docstore ID 매핑)를 관리하여 벡터와 원본 문서를 연결합니다.

● 저장 및 로드: save_local 및 load_local 메서드를 통해 FAISS 인덱스 (vectorstore.faiss,

바이너리)와 메타데이터 (vectorstore.pkl, pickle)를 저장 및 복원합니다.

3.4.2. 메타데이터 매핑 전략 (Metadata Mapping Strategy)

FAISS 자체는 메타데이터를 지원하지 않으므로, 효율적인 메타데이터 관리를 위해

chunk_map 이라는 추가 자료구조를 도입합니다.



chunk_map 의 주요 활용 목적:

● 빠른 중복 검사: $O(1)$ 시간 복잡도로 새로운 청크의 존재 여부를 즉시 확인.

● 내용 변경 감지: chunk_hash 비교를 통해 문서 업데이트 시 변경된 청크만 재처리.

● 설정 변경 감지: embedding_config_hash 비교를 통해 설정 변경 시 재임베딩 필요성

판단.

● 효율적인 삭제: 특정 file_hash 를 가진 항목들의 FAISS 인덱스를 빠르게 수집하고 일괄

삭제.

3.4.3. 검색 성능 최적화 (Search Performance Optimization)

● 인덱스 타입 선택: 현재는 정확도를 위한 IndexFlatL2 를 사용하지만, 향후 대규모 확장

시 IndexIVFFlat 또는 IndexHNSW와 같은 근사 검색 인덱스 (Approximate Nearest

Neighbor Search)로 전환을 고려할 수 있습니다.

● top_k 조정: 필요 이상으로 큰 값을 설정하지 않아 검색 시간을 최소화합니다 (기본값 5).

● 메타데이터 필터링: FAISS 는 사전 필터링을 지원하지 않아 유사도 검색 후 결과를

필터링합니다. 대규모 확장 시 Pinecone, Weaviate 등 메타데이터 필터링을 지원하는

벡터 데이터베이스 마이그레이션을 고려할 수 있습니다.

● 인덱스 재구성 최소화: FAISS 의 벡터 삭제 비용이 크므로, 삭제 작업을 배치 (batch)로

묶어 처리하고 대량 업데이트 시에만 인덱스를 재구성합니다.

3.5. 다단계 검색 시스템 (Multi-Stage Retrieval System)
사용자 질의에 대해 점진적으로 관련성을 높여가는 전략을 사용하여 검색의 정밀도를

향상시킵니다.

3.5.1. 1 차 광범위 검색 (Broad Retrieval)

1 차 검색은 전체 문서 집합에서 관련 가능성이 있는 청크를 빠르게 식별하여 재현율 (Recall)을

높이는 것을 목표로 합니다.

1. 질의 임베딩: 사용자 질의를 OpenAIEmbeddings 를 사용하여 1536 차원 벡터로

변환합니다.

2. FAISS 검색: FAISS 의 similarity_search_with_score 를 호출하여 L2 거리 기반의 최근접

이웃 검색을 수행하고, top_k 개수 (기본값 5)만큼의 청크와 거리 점수를 반환합니다.

3. 결과 반환: 청크의 텍스트와 메타데이터 (file_hash, start_page, distance 등)를 포함하는

리스트를 반환합니다.

3.5.2. 2 차 심층 검색 (Deep Retrieval)

1 차 검색에서 식별된 특정 문서 내에서만 검색을 수행하여 정밀도 (Precision)를 높입니다.

● 메타데이터 필터링 활용: filter_metadata={'file_hash': 'abc123'}와 같이 특정 file_hash 를

가진 청크만 검색하도록 조건을 전달합니다.



● 검색 후 처리: FAISS 가 사전 필터링을 지원하지 않으므로, 1 차 검색 후 결과에 대해

필터 조건을 적용하여 최종 결과를 선택합니다.

● 효과: "헬륨회수시스템이 사용되는 곳은?"과 같은 세부 질문에 대해 관련 문서 내에서만

검색함으로써 정확한 답변과 위치 정보를 얻을 수 있습니다. 불필요한 노이즈를

효과적으로 제거합니다.

3.5.3. 파일 해시 기반 필터링 효과 (File Hash Based Filtering Effect)

파일 해시 기반 필터링은 2 차 심층 검색의 핵심 메커니즘입니다.

● 정밀도 향상: 전체 문서가 아닌 특정 문서 내에서만 검색하므로, 다른 문서의 유사

표현에 의한 잘못된 매칭 (false positive)을 방지합니다.

● 컨텍스트 일관성: 대화가 특정 문서에 집중되도록 컨텍스트를 유지하고, LLM 에

전달되는 컨텍스트의 일관성을 높여 답변 품질을 향상시킵니다.

● 사용자 경험: 검색 결과가 모두 동일한 문서에서 나오므로, 사용자는 하나의 문서를

깊이 있게 탐색하는 직관적인 경험을 얻을 수 있습니다.

3.6. 전처리 효과 분석 (Preprocessing Effect Analysis)

3.6.1. 토큰 절약 효과 (21.5%)

정부나라장터 제안요청서에 대한 전처리 적용 결과, 원본 36,146 자에서 전처리 후 28,359 자로

감소하여 평균 21.5%의 토큰 절약 효과가 확인되었습니다.

● 공백/개행 정리: 15.4% 절약 (불규칙한 공백/과도한 빈 줄 제거).

● Markdown 요소 제거: 23.3% 추가 절약 (HTML 태그, 링크, 강조 기호 등 형식 마크업

제거).

● 빈 테이블 행 제거: 47.4%의 극적인 효과.

3.6.2. 비용 절감 분석 (Cost Reduction Analysis)

text-embedding-3-small 모델은 백만 토큰당 0.02 달러로 과금되어 토큰을 줄여서 비용을 줄일

수 있습니다.

연간 절감액

(79,200 건)

71.49 달러 56.15 달러 약 15.3 달러

임베딩 비용 (문서당) 0.000902 달러 0.000709 달러 0.000193 달러

토큰 수 (문서당) 9,036 토큰 (추정) 7,089 토큰 (추정) 21.5%

항목 전처리 전 (평균) 전처리 후 (평균) 절감 효과



또한, 검색된 청크의 토큰 수 감소는 LLM (Large Language Model) 입력 토큰 수를 줄여 LLM

응답 생성 비용도 간접적으로 절감하는 효과를 가져옵니다 (예: GPT-4o 입력 비용 감소).

3.6.3. 검색 품질 개선 (Search Quality Improvement)

전처리는 노이즈 제거를 통해 검색 품질 향상에 기여합니다.

● 노이즈 제거: Markdown 문법, HTML 태그, 불필요한 공백 등이 제거되어 임베딩 모델이

순수한 내용에만 집중할 수 있어 더 정확한 의미 표현이 가능해집니다.

● 의미 밀도 향상: 동일 청크 크기에 더 많은 실제 내용이 포함되어 정보의 양이 증가하고

관련 정보를 찾을 확률이 높아집니다.

● 일관성 개선: 다양한 문서 형식이 통일된 형태로 변환되어 임베딩 공간에서 의미적

유사성을 높입니다.

● False Positive 감소: 형식적 유사성으로 인한 잘못된 매칭이 줄어듭니다.

실제 테스트에서 전처리 후 상위 검색 결과의 관련성이 더 높고 거리 점수 분포가 더 명확하게

구분되는 것이 확인되었습니다.



4. LLM 기반 정보 추출 및 요약 (이민규)

4.1. LLM 프로세서 설계

4.1.1. ChatOpenAI 모델 설정

LLM Processor 는 RAG (Retrieval-Augmented Generation) 시스템의 최종 단계에서, 검색된

문서 청크를 기반으로 사용자의 질문에 대한 자연어 답변을 생성합니다. 본 시스템은

OpenAI 의 ChatGPT 시리즈 모델을 활용하며, LangChain 의 ChatOpenAI 클래스를 통해

통합된 인터페이스를 제공합니다.

● 모델 및 설정:

● LLMProcessor 클래스는 초기화 시 모델명과 생성 파라미터를 설정합니다.

● 기본 모델명은 gpt-5-mini 로, 2025 년 초에 공개된 최신 모델이며, 이전 세대

모델 대비 빠른 추론 속도, 낮은 비용, 그리고 우수한 성능을 보입니다.

● Temperature 파라미터는 생성 텍스트의 창의성과 일관성을 조절하며, RAG

시스템의 목표가 사실적인 정보 전달이므로 기본값은 0.0 으로 설정되었습니다.

이는 동일한 질문과 컨텍스트에 대해 항상 일관된 답변을 제공하기 위함입니다.

● 모델별 특수 처리:

● gpt-5-mini 모델의 경우 temperature 파라미터로 0.0 을 지원하지 않으므로,

생성자에서 자동으로 1.0 으로 조정하고 경고 메시지를 로깅합니다. 이는 API

오류를 사전에 방지하기 위함입니다.

● API 키 관리 (보안 및 편의성):

● API 키의 우선순위는 메서드 파라미터 > 환경 변수 (OPENAI_API_KEY) >

Config 설정 순서입니다.

● API 키가 설정되지 않은 경우 ValueError 예외를 발생시켜 문제를 조기에 발견할

수 있도록 합니다.

● API 호출 추상화 (LangChain):

● LangChain 의 ChatOpenAI 클래스는 OpenAI API 호출을 추상화하여 재시도

로직, 스트리밍 응답, 토큰 카운팅 등의 기능을 자동으로 처리합니다.

● 네트워크 오류 시 지수 백오프 전략 (exponential backoff strategy)을 사용하여

최대 3 회까지 자동으로 재시도합니다.

4.1.2. Temperature 및 파라미터 최적화

LLM 의 출력 품질을 결정하는 다양한 생성 파라미터는 RAG 애플리케이션의 특성에 맞게

최적화되었습니다.

● Temperature (온도):

● 0.0 으로 설정하여 결정론적 (deterministic) 답변을 보장하며, 이는 정확한 정보

전달을 목표로 하는 RAG 시스템에 적합합니다.



● 실험 결과 0.0 은 0.3 대비 문서 내용을 더 충실하게 반영하고 불필요한 추론을

최소화하는 경향을 보였습니다.

● Max_tokens (최대 토큰 수):

● 생성할 최대 토큰 수를 지정하며, 응답 시간과 비용을 고려하여 50000 토큰으로

설정되었습니다. 이는 입찰 공고 문서에 대한 다양한 범위의 질문에 충분한

답변을 제공하기 위한 여유를 확보합니다.

● 모델별 파라미터 처리:

● GPT-5 시리즈, GPT-4.1 시리즈, O1 시리즈 모델은 max_completion_tokens

파라미터를 사용하고 temperature 를 지원하지 않습니다.

● GPT-4o, GPT-4-turbo 등 이전 세대 모델은 temperature 와 max_tokens 를

모두 지원합니다.

● generate_response 메서드는 모델명을 확인하여 적절한 파라미터 조합을

자동으로 선택합니다.

● Top_p (핵심 샘플링):

● Nucleus sampling 을 제어하며, 기본값인 1.0 을 사용하여 모든 토큰을 고려

대상에 포함시킵니다.

● Presence_penalty 및 Frequency_penalty (반복 억제):

● 문서 내용을 충실히 반영해야 하므로 반복 억제 페널티를 적용하지 않으며,

기본값인 0.0 을 유지합니다.

● Stop 시퀀스:

● 현재는 사용하지 않지만, 향후 특정 형식의 답변 (예: JSON)을 강제하고 싶을 때

활용할 수 있습니다.

4.1.3. gpt-5-mini 호환성 처리

gpt-5-mini 는 빠른 응답 속도와 낮은 비용을 제공하지만, 이전 모델과 다른 파라미터 제약을

가집니다.

● Temperature 제약:

● gpt-5-mini 는 temperature 값으로 0.0 을 지원하지 않으며, 최소값은 0.3 입니다.

● LLMProcessor 생성자에서 temperature 가 0.0 으로 설정된 경우 자동으로

1.0 으로 변경하고 경고 로그를 출력합니다.

● Max_completion_tokens 사용:

● GPT-5 시리즈부터는 출력 토큰을 명확히 구분하기 위해 max_tokens 대신

max_completion_tokens 명칭을 사용합니다.

● generate_response 메서드는 모델명에 gpt-5, gpt-4.1, o1 등이 포함되어 있는지

확인하여 적절한 파라미터를 사용합니다.

● 컨텍스트 윈도우:

● gpt-5-mini 는 최대 128K 토큰의 컨텍스트를 지원합니다.

● 응답 시간 및 성능:

● gpt-4o 나 gpt-4-turbo 에 비해 빠른 응답을 제공하며, 평균 2 초에서 5 초 내에

답변을 생성합니다.



● 다만, 복잡한 추론이 필요한 질문에서는 큰 모델 대비 성능이 낮을 수 있습니다.

● 비용 효율성:

● gpt-4o 대비 크게 저렴하여 (입력 백만 토큰당 $0.075 vs. $2.5, 출력 백만

토큰당 $0.3 vs. $10), 프로토타입이나 대용량 처리에 유리합니다.

● 시스템은 기본 모델로 gpt-5-mini 를 사용하되, 필요시 Config 설정을 변경하여

모델을 전환할 수 있습니다.

4.2. 프롬프트 엔지니어링

4.2.1. RAG 프롬프트 템플릿 설계

프롬프트는 LLM 에게 수행할 작업을 지시하는 핵심 요소이며, RAG 시스템에서는 검색된

문서를 컨텍스트로 제공하고 답변을 유도하는 구조가 필요합니다.

● 기본 프롬프트 구조:

1. 시스템 역할 정의 지시문: (예: "다음 컨텍스트를 참고하여 질문에 답변해주세요")

2. 컨텍스트 섹션: 검색된 청크들이 포맷된 형태로 삽입되며, 각 청크는 출처 정보와

함께 제공됩니다.

3. 질문 섹션: 사용자의 원래 질의가 삽입됩니다.

4. 답변 유도: (예: "답변:")과 같은 명시적 라벨을 사용하여 즉시 답변을 시작하도록

합니다.

● 템플릿 관리:

● 프롬프트 템플릿은 src/llm/prompts 에 저장되며, context 와 question 두 개의

변수가 정의됩니다.

● PromptLoader 클래스는 프롬프트 템플릿을 외부 파일에서 로드하는 기능을

제공하여 코드 변경 없이 수정이 가능하며, JSON 형식으로 저장됩니다.

● 프롬프트 로딩 우선순위: templates 딕셔너리 (rag_prompt_template 키 ->

template 키 -> default 키) -> Config 의 RAG_PROMPT_TEMPLATE 순서로

최종적으로 항상 유효한 프롬프트가 사용되도록 보장합니다.



4.2.2. 컨텍스트 구성 전략

검색된 청크를 LLM 에 제공하는 방식은 답변 품질에 큰 영향을 미칩니다. 본 시스템에서는

청크 기반과 페이지 기반의 두 가지 컨텍스트 구성 방식을 지원합니다.

포맷 이중 개행으로 청크 분리 (예: "출처 1: 공고문.pdf, 페이지 5,

유사도=0.1234")

출처 정보 문서 번호, 파일명 파일명, 페이지 번호, 유사도 점수

(소수점 넷째 자리까지)

구성 단위 각 청크가 독립적으로 포맷되어

순서대로 나열

페이지 단위로 병합된 텍스트 제공

(더 넓은 문맥 포함)

사용 메서드 Retrieval 의 search 메서드 결과 Retrieval 의 search_page 메서드

결과

구분 청크 기반 컨텍스트 페이지 기반 컨텍스트

● 컨텍스트 크기 제한:

● max_chunks 파라미터로 제어되며, 검색 결과가 많을 경우 상위 n 개의 청크만

포함하여 LLM 의 집중력 분산을 방지합니다.

● 기본값은 5 로 설정되어 있습니다.

● 컨텍스트 부재 처리 (환각 방지):

● 검색 결과가 없거나 청크 유사도가 임계값 이하인 경우, Config 의

NO_CONTEXT_MESSAGE (예: "검색된 관련 문서가 없습니다")를 사용하여

LLM 이 임의로 답변을 생성하는 환각 현상을 방지하고 정보 부족을 명확히

알립니다.

● 자동 포맷 감지:

● _build_context 메서드는 retrieved_chunks 의 타입을 확인하여 페이지 기반

(pages 키 포함된 딕셔너리) 또는 청크 기반 (리스트)으로 자동 판단합니다.

4.2.3. 한국어 응답 최적화

한국어 입찰 공고 문서를 다루므로, 한국어 응답의 자연스러움과 정확성 향상을 위해 프롬프트

전략이 필요합니다.

● 프롬프트 언어 지정: 시스템 지시문, 섹션 라벨 등을 모두 한국어로 작성하여 LLM 이

한국어 모드로 작동하도록 유도합니다.

● 경어 수준 조정: 입찰 공고의 공식적인 성격을 고려하여, 프롬프트에 "존댓말을

사용하여 답변해주세요"와 같은 명시적 지시를 포함하여 격식 있는 어투를 유지하도록

합니다.



● 용어 일관성: "입찰 및 조달 분야의 전문 용어를 정확히 사용하세요"와 같은 지시를

추가하여 제안요청서, 과업지시서 등의 도메인 특화 용어 오용을 줄입니다.

● 문장 구조: "간결하고 명확한 문장으로 답변해주세요", "핵심 정보를 먼저 제시하세요"와

같은 지시로 지나치게 장황한 답변을 방지하고 답변 구조를 개선합니다.

● 출처 표시: "답변 후 출처 정보를 제공하세요"와 같은 지시를 포함하여 "이 정보는

공고문.pdf 의 5 페이지에 있습니다"와 같이 자연스러운 한국어 문장으로 출처를

언급하도록 유도합니다.

4.3. 대화 이력 관리

4.3.1. ChatHistoryDB 스키마

대화형 RAG 시스템은 상호작용 기록 관리가 중요하며, ChatHistoryDB 는 SQLite

데이터베이스를 사용하여 채팅 세션과 메시지를 저장합니다.

● 데이터베이스 파일: Config 의 CHAT_HISTORY_DB_PATH 에 지정된 경로 (기본값:

data/chat_history.db)에 생성됩니다.

● 테이블 구조:

1. chat_sessions 테이블 (대화 세션 메타데이터)

● session_id (UUID 형식 기본 키)

● session_name (사용자 친화적 세션 이름)

● created_at, updated_at (생성/마지막 수정 시각)

● is_active (활성 상태)

2. chat_messages 테이블 (실제 대화 내용)

● message_id (자동 증가 기본 키)

● session_id (외래 키, CASCADE 삭제 옵션 설정)

● role (user 또는 assistant)

● content (메시지 텍스트)

● retrieved_chunks (검색된 청크 정보, JSON 형식, user 메시지에만 저장)

● timestamp

● 데이터 무결성 및 성능: 외래 키 제약으로 데이터 무결성을 보장하며, session_id 와

timestamp 에 인덱스가 자동 생성되어 조회 속도가 빠릅니다.

4.3.2. 세션 기반 대화 관리

세션은 연속된 대화를 논리적으로 그룹화하는 단위로, 여러 세션을 병렬적으로 관리할 수

있습니다.

● 세션 생성: create_session 메서드를 통해 UUID 를 사용하여 고유 ID 를 생성하며, 세션

이름 미지정 시 현재 시각을 포함한 기본 이름이 자동 생성됩니다.

● 메시지 추가: add_message 메서드는 세션 ID, 역할, 내용, 검색된 청크를 받아

chat_messages 에 저장하며, 해당 세션의 updated_at 을 자동으로 갱신합니다.



● 검색된 청크는 JSON 문자열로 직렬화되어 저장됩니다 (ensure_ascii=False

옵션으로 한글 이스케이프 방지).

● 세션/메시지 조회:

● list_sessions: 모든 세션을 updated_at 기준 내림차순으로 반환합니다.

● get_session_messages: 특정 세션의 모든 메시지를 시간순으로 정렬하여

반환합니다.

● 세션 삭제: delete_session 메서드는 CASCADE 삭제 옵션 덕분에 관련 메시지를 모두

자동으로 삭제합니다.

● 통계 정보: get_chat_stats 메서드는 총 세션 수, 메시지 수 등의 정보를 제공하여 시스템

사용 현황을 파악합니다.

4.3.3. 검색 청크 메타데이터 저장

대화 이력에 검색 청크 정보를 함께 저장하면 답변의 근거 추적, 검색 품질 평가, 디버깅 및

개선 등의 이점을 얻을 수 있습니다.

● 청크 메타데이터 구조: file_hash, file_name, start_page, distance 등의 필드를 포함하며,

리스트 형태의 딕셔너리로 저장됩니다.

● JSON 직렬화 처리:

● LLMProcessor 는 저장 전에 _convert_tuple_keys_to_str 메서드를 호출하여 튜플

키를 JSON 이 지원하는 문자열로 변환합니다.

● _add_file_hash 메서드를 통해 file_hash 가 누락된 경우 청크 텍스트의 MD5

해시를 계산하여 추가함으로써 데이터 일관성을 유지합니다.

● 활용:

● 사용자에게 원본 문서의 정확한 위치를 안내하는 근거로 사용됩니다.

● 저장된 distance 값을 분석하여 검색 품질을 평가하고 임계값 조정에 활용됩니다.

4.4. 메모리 및 요약

4.4.1. ConversationSummaryMemory 구현

긴 대화에서 토큰 한도 초과 및 응답 시간 증가 문제를 해결하기 위해

ConversationSummaryMemory 를 사용하여 대화 이력을 요약하여 관리합니다.

● 작동 방식:

● 초기에는 전체 대화 이력을 유지하다가, 토큰 수가 설정된 임계값

(max_token_limit)을 초과하면 가장 오래된 대화를 요약으로 대체합니다.

● 새로운 메시지는 그대로 유지되어 최근 컨텍스트는 보존됩니다.

● 초기화 설정:

● LLMProcessor 생성자에서 ConversationSummaryMemory 를 초기화합니다.

● 요약 생성에 사용할 모델 (ChatOpenAI 인스턴스)을 지정합니다.



● max_token_limit (요약 트리거 임계값)의 기본값은 1500 토큰입니다.

● 커스텀 요약 프롬프트로 요약 스타일을 제어할 수 있습니다.

● 요약 프로세스: 메시지 추가 시 토큰 수 계산 $\to$ 임계값 초과 시 오래된 메시지 선택

$\to$ 요약 프롬프트와 함께 LLM 에 전달 $\to$ 요약문 생성 및 메모리 대체.

● 장점: 토큰 사용량 제한 및 비용 절감, 응답 속도 유지, 긴 대화에서 컨텍스트 연속성

유지.

4.4.2. 한국어 요약 프롬프트

한국어 대화에 최적화된 자연스러운 요약 생성을 위해 한국어 요약 프롬프트를 구현하였습니다.

● KOREAN_SUMMARY_PROMPT 정의:

● PromptTemplate 객체로 정의되며, 입력 변수로 summary (기존 요약)와

new_lines (새로운 대화 내용)를 가집니다.

● 템플릿 구조: "기존 대화 요약:", "새로운 대화:" 라벨 제시 후, "위 내용을

바탕으로 한국어로 업데이트된 대화 요약을 작성하세요"라는 명확한 지시문을

포함합니다.

● 특징:

● "한국어로"라는 명시적 언어 지정으로 영어 혼입을 방지합니다.

● "업데이트된" 표현으로 누적적인 요약을 유도합니다.

● 추가 지시를 통해 요약의 길이, 형식, 톤을 제어할 수 있습니다.

4.4.3. 대화 컨텍스트 유지 전략

이전 대화를 기억하고 컨텍스트를 유지하여 "그것은 무엇인가요?"와 같은 참조 질문에

효과적으로 답변할 수 있도록 합니다.

● RunnableWithMessageHistory (LangChain):

● 대화 이력을 자동으로 관리하는 메커니즘으로, ConversationChain 을 래핑하여

각 호출 시 세션별 대화 이력을 주입하고 응답을 저장합니다.

● invoke 호출 시 session_id 를 전달하여 각 세션의 이력을 독립적으로 관리하고

병렬 진행을 가능하게 합니다.

● InMemoryChatMessageHistory:

● 대화 이력을 메모리에 저장하는 구현체로, 단일 세션 동안의 대화에 사용됩니다.

● 컨텍스트 주입:

● generate_response 호출 시, RunnableWithMessageHistory 가 현재 세션의

이력을 조회하여 프롬프트에 자동으로 포함시킵니다.

● 컨텍스트 윈도우 관리 결합:

● ConversationSummaryMemory 와 결합하여 대화가 길어질 경우 자동으로

요약을 생성하고, 요약된 이력과 최근 메시지만 컨텍스트에 포함하여 토큰

사용량을 제어합니다.



4.5. RAG 평가 시스템

4.5.1. LLM Judge 기반 평가

RAG 시스템의 품질을 객관적으로 평가하기 위해, 의미적 정확성을 더 잘 포착하는 LLM Judge

기반 평가를 사용합니다.

● 평가 함수: rag_evaluator 모듈의 evaluate_rag_performance 함수가 LLM Judge 기반

평가를 구현합니다.

● 평가 모델: gpt-4o-mini 모델이 기본으로 사용되며, 비용 효율성과 평가 품질의 균형을

맞춥니다.

● 시스템 프롬프트 (평가자 정의): "당신은 RAG 시스템의 품질을 평가하는 최고 전문가

LLM Judge 입니다"라는 문구로 평가자의 전문성을 강조하고, 공정하고 엄격한 평가를

유도합니다.

● 평가 데이터 구조: 사용자 프롬프트에서 질의, 문서 전체, 질의 답변을 각각 명확히

구분하여 제시합니다.

● JSON 형식 응답 강제: 평가 결과를 프로그래매틱하게 처리하기 위해, 프롬프트에

명시적으로 JSON 스키마를 제시하고, 순수한 JSON 형식으로만 출력하도록 강제합니다.

● 오류 처리: try-except 블록으로 API 호출을 감싸고, 응답 시 JSONDecodeError 등을

포착하여 디버깅 정보를 포함한 오류 딕셔너리를 반환함으로써 시스템 중단을

방지합니다.

4.5.2. 4 대 평가 지표

RAG 시스템의 품질은 4 가지 핵심 지표를 통해 다차원적으로 평가됩니다. LLM Judge 는 각

지표에 대해 1 점부터 5 점까지 점수를 매기고 그 근거를 제공하여 평가 결과의 투명성과

신뢰성을 높입니다.

Answer

Relevance

답변 관련성 답변이 질의와 직접적으로

관련되는가 (불필요한 정보

배제).

프롬프트 설계의 효과 측정

Answer

Accuracy

답변 정확도 답변이 질의에 대해 정확하고

완전한가.

전체 시스템의 효용성

(질문에 올바르게 답했는지)

Context

Relevance

문맥 관련성 검색된 문서가 질의와 얼마나

관련 있는가.

검색 단계의 품질 측정.

(낮으면 검색 전략 개선 필요)

Faithfulness 충실성

/근거성

생성된 답변이 제공된

컨텍스트에 얼마나 충실한가.

환각 현상 감지 및 시스템

신뢰성. (5 점: 모든 정보가

문서에서 확인 가능)

지표명 한글 용어 평가 내용 핵심 목적/의미



4.5.3. JSON 형식 결과 반환

평가 결과는 자동화된 분석과 모니터링을 위해 구조화된 JSON 형식으로 반환됩니다.

● 응답 스키마:

● Query (원래 질의)

● Generated_Answer (시스템 생성 답변)

● Evaluation_Metrics (4 개 지표를 포함하는 중첩 객체, 각 지표는 Rating 과

Reasoning 필드 가짐)

● Overall_Assessment (종합적인 전반적 평가)

● 파싱 처리:

● OpenAI API 응답 content 에서 Markdown 코드 블록 (예: json ... )을

정규표현식으로 제거한 후 json.loads 로 파싱합니다.

● 활용:

● 결과를 데이터베이스에 저장하여 시간에 따른 품질 추이를 추적하고, 통계

분석을 통해 평균 점수 및 지표별 분포를 시각화할 수 있습니다.

● 자동화된 테스트에 통합하여 CI/CD 파이프라인에서 품질 저하를 조기에

감지하는 데 사용됩니다.



5. RAG 사용자 인터페이스 및 시스템 통합 (오형주)

RAG(Retrieval-Augmented Generation) 기반 PEP(공공데이터 포털) 문서 처리 시스템의 사용자

인터페이스(UI) 설계 및 시스템 통합(System Integration) 아키텍처에 대해 상세히 기술합니다.

5.1. Streamlit 기반 UI 설계

Streamlit 은 데이터 과학 애플리케이션을 위한 Python 기반 오픈소스 프레임워크로, 개발

생산성 극대화 및 사용자에게 직관적인 인터페이스 제공을 위해 채택되었습니다.

5.1.1. 페이지 구조 및 레이아웃

시스템의 페이지 구조는 단일 페이지(Single Page) 형태로 설계되었으며, 효율적인 정보

접근을 위해 사이드바(Sidebar)와 메인 영역(Main Area)으로 구성됩니다.

● 제목 및 식별: set_page_config 메서드를 통해 시스템 제목이 브라우저 탭에 명확히

표시됩니다.

● 사이드바: 주요 설정 및 제어 기능 (세션 관리, 검색 옵션, 고급 설정 등)을 담당하며,

메인 화면의 집중도를 높입니다.

● 메인 영역: 채팅 인터페이스로 구성되어, 사용자 메시지와 어시스턴트 응답을

시간순으로 표시합니다. chat_message 컴포넌트를 사용하여 역할(role)별 스타일을

구분합니다.

● 입력 영역: 화면 하단에 고정된 chat_input 컴포넌트를 통해 텍스트 입력 기능을

제공합니다.

● 반응형 디자인: Streamlit 기본 기능을 활용하여 모바일 환경에서도 사용 가능한

레이아웃을 유지합니다.

5.1.2. 채팅 인터페이스 구현

자연스러운 대화 경험을 제공하기 위해 다음과 같은 UX 패턴이 적용되었습니다.

● 메시지 표시 및 상태 유지: session_state 를 활용하여 대화 이력(messages 리스트)을

저장 및 유지하고, 페이지 렌더링 시 이를 순회하며 표시합니다.

● 스트리밍 응답 (Streaming Response): LLM(Large Language Model)이 답변을

생성하는 즉시 토큰을 화면에 표시하기 위해 Streamlit 의 write_stream 메서드를

활용하여 사용자 대기 시간을 단축합니다.

● 로딩 인디케이터 (Loading Indicator): 검색 및 응답 생성 중에는 spinner 컴포넌트를

사용하여 시스템이 작동 중임을 명확히 알립니다.

● 에러 처리 (Error Handling): error 컴포넌트를 통해 사용자 친화적인 오류 메시지를

표시하며, 기술적 세부사항을 숨기고 구체적인 해결 방법을 안내합니다.

● 자동 스크롤: 새로운 메시지 추가 시 화면이 자동으로 최하단으로 스크롤되어 최신

메시지 확인을 용이하게 합니다.

● 메시지 컨텍스트 메뉴: 메시지 옆에 아이콘 버튼을 배치하여 출처 보기 등의 추가

액션을 제공하여 답변의 신뢰성을 높입니다.



5.1.3. 세션 관리 UI

사용자가 여러 대화를 조직하고 관리할 수 있도록 사이드바에 세션 관리 섹션을 할당했습니다.

● 새 세션 생성: 버튼 클릭 시 새로운 세션 ID 가 생성되고 session_state 가 초기화되어

새로운 대화를 시작할 수 있습니다.

● 세션 목록: expander 컴포넌트로 구현되며, 각 세션의 이름, 마지막 활동 시각 등의

정보와 함께 표시됩니다.

● 세션 전환: 선택 시 ChatHistoryDB 에서 해당 세션의 메시지를 불러와 화면에 표시하며,

현재 세션의 상태는 자동으로 저장됩니다.

● 세션 삭제: 확인 대화상자를 표시하여 실수로 인한 데이터 손실을 방지합니다.

● 활성 세션 표시: 현재 활성화된 세션을 하이라이트 색상과 아이콘으로 시각적으로

구분합니다.

● 세션 통계: ChatHistoryDB 의 get_chat_stats 메서드를 호출하여 총 대화 수, 메시지 수

등의 통계를 사이드바 하단에 제공합니다.

5.2. 시스템 통합 아키텍처

5.2.1. 모듈 간 데이터 흐름

시스템은 독립적인 모듈들이 명확한 인터페이스를 통해 통신하는 구조입니다.

사용자 질의 응답 흐름:

1. 사용자 질문 (Streamlit UI 입력) -> app.py 이벤트 핸들러 수신.

2. Retrieval 모듈 호출: 질의 텍스트를 전달하여 관련 문서 검색을 수행.

3. Retrieval → VectorStoreManager 호출: FAISS 인덱스에서 유사도 검색 실행 후, 상위

k 개 청크를 텍스트 및 메타데이터(파일명, 페이지 번호 등)와 함께 딕셔너리 형태로

반환.

4. LLMProcessor 호출: 검색 결과 청크를 프롬프트 컨텍스트로 포맷하고 사용자 질의와

함께 LLM 에 전달.

5. LLMProcessor → OpenAI API 호출: 응답 생성.

6. LLMProcessor → ChatHistoryDB 호출: 질의와 응답(검색 청크 정보 포함)을 기록.

7. app.py 로 답변 반환 → Streamlit UI 를 통해 사용자에게 표시 (스트리밍 또는 일괄).

데이터 변환 및 에러 전파:

● 데이터 변환 (Data Transformation): 모듈 경계에서 발생하며, 예를 들어 Retrieval 의

출력(딕셔너리 리스트)은 LLMProcessor 에서 문자열 형태의 컨텍스트로 변환됩니다.



● 에러 전파 (Error Propagation): 하위 모듈에서 발생한 예외는 로깅 후 상위 모듈로

전파되며, app.py 에서 최종적으로 포착되어 사용자 친화적인 오류 메시지로

변환됩니다.

5.2.2. Config 기반 설정 관리

시스템의 모든 설정은 Config 클래스를 통해 중앙 집중식으로 관리됩니다.

● Config 클래스: 싱글톤 패턴(Singleton Pattern)으로 구현되어 애플리케이션 전체에서

동일한 인스턴스를 공유하며, 설정의 일관성과 메모리 효율성을 보장합니다.

● 설정 파일: 가독성과 편집 용이성을 위해 JSON 형식을 사용하며, 설정이 누락되거나

파일이 없을 경우 클래스 내부에 정의된 기본값을 사용합니다.

● 동적 설정 변경: top_k 설정은 UI 를 통해 런타임에 동적으로 조정 가능하며, 즉시 다음

질의부터 적용됩니다.

● 환경 변수 오버라이드: OpenAI API 키와 같은 민감 정보는 환경 변수를 우선적으로

확인하여 보안을 강화하고 배포 환경의 유연성을 확보합니다.

● 설정 검증: 애플리케이션 시작 시 필수 설정 누락 및 값의 유효성을 검증하여 런타임

에러를 사전에 방지합니다.

5.2.3. 로깅 및 모니터링

포괄적인 로깅 체계를 통해 시스템 동작 추적 및 문제 진단을 용이하게 합니다.

● 로그 레벨: DEBUG, INFO, WARNING, ERROR, CRITICAL 5 단계로 구분하여 중요도에

따라 필터링합니다.

● 로그 포맷: 타임스탬프(KST 타임존), 로그 레벨, 모듈명, 함수명, 메시지로 구성된 일관된

구조를 사용합니다.

● 파일 로깅: RotatingFileHandler 를 사용하여 로그 파일이 일정 크기를 초과하면

자동으로 회전(rotation)하며, logs/ 디렉토리에 날짜별로 저장됩니다.

● 콘솔 로깅: 개발 환경에서 StreamHandler 를 통해 실시간 피드백을 제공하며, 색상

코딩을 적용하여 레벨을 시각적으로 구분합니다.

● 성능 로깅: 검색, 임베딩, LLM 응답 생성 등 주요 작업의 실행 시간을 측정 및 기록하여

성능 병목 지점을 식별합니다.

● 에러 로깅: logging.exception 메서드를 사용하여 스택 트레이스를 포함한 전체 예외

정보를 상세히 기록합니다.



5.3. 검색 옵션 제어

사용자가 상황에 맞게 검색 전략을 선택하고 조정할 수 있도록 사이드바에 검색 옵션 제어

UI 를 제공합니다.

5.3.1. Top-K 파라미터 조정

검색 결과로 반환할 청크의 개수($k$)를 지정하는 파라미터로, 검색 품질과 응답 생성 비용의

균형을 조정합니다.

● UI: 슬라이더(Slider) 컴포넌트를 사용하여 최소 1 에서 최대 20 까지의 범위를 설정하며,

기본값은 5 입니다.

● 가이드라인: 값이 높을수록 더 많은 문서를 참조하지만, 응답 시간 및 비용이 증가함을

텍스트로 안내합니다.

● 실시간 미리보기: 슬라이더 조정 시 해당 값으로 마지막 질의를 재검색하여 반환될

청크의 제목이나 첫 문장을 미리 보여줍니다.

● 동적 조정 제안: 질의의 복잡도를 분석하여 시스템이 자동으로 적절한 Top-K 값을

추천합니다.

5.3.2. 문서 업로드 및 인덱싱

사용자가 직접 PDF 문서를 시스템에 추가하고 분석할 수 있는 기능을 제공합니다.

● 파일 업로더: Streamlit 의 file_uploader 컴포넌트를 사용하여 PDF 파일만 허용하며,

UploadedFile 객체로 반환됩니다.

● 중복 검사: 파일 내용의 SHA-256 해시를 계산하여 DocumentsDB 에서 중복 여부를

즉시 확인하고, 중복 시 업로드를 중단합니다.

● 문서 처리 파이프라인: 업로드 후 PDF 파싱, 전처리, DocumentsDB 저장, 임베딩 생성(-

> FAISS Index 추가)의 전 과정이 순차적으로 실행되며, progress 컴포넌트로 진행

상황을 표시합니다.

● 임베딩 생성 선택: 문서를 DB 에 저장한 후 즉시 임베딩 생성할지, 나중에 배치 작업으로

수행할지 선택할 수 있습니다.

● 오류 처리: 파일 손상, 파싱 실패, API 호출 실패 등의 문제가 발생하면 명확한 오류

메시지를 표시하고, 부분 처리된 데이터는 롤백하여 데이터베이스 일관성을 유지합니다.

5.3.3. 공공데이터 포털 업데이트

공공데이터 포털에서 특정 기간에 업로드된 정보들을 수집합니다.

● 시작날짜/종료날짜: 사용자가 입력한 정보를 수집할 시작과 종료 날짜를 기반으로

document.db 를 업데이트하여 저장합니다.

● 중복 검사: 파일 내용의 SHA-256 해시를 계산하여 DocumentsDB 에서 중복 여부를

즉시 확인하고, 중복 시 업로드를 중단합니다.



● 문서 처리 파이프라인: 업로드 후 PDF 파싱, 전처리, DocumentsDB 저장, 임베딩 생성(-

> FAISS Index 추가)의 전 과정이 순차적으로 실행되며, progress 컴포넌트로 진행

상황을 표시합니다.

● 오류 처리: 파일 손상, 파싱 실패, API 호출 실패 등의 문제가 발생하면 명확한 오류

메시지를 표시하고, 부분 처리된 데이터는 롤백하여 데이터베이스 일관성을 유지합니다.

5.3.4. 검색 결과 시각화

검색 결과를 시각적으로 풍부하게 제공하여 사용자의 결과 이해 및 탐색을 돕습니다.

● 청크 카드: expander 를 사용하여 각 검색 결과를 접을 수 있는 카드 형태로 표현하며,

헤더에는 문서명, 페이지 번호, 유사도 점수를 표시합니다. 펼치면 청크 텍스트가

나타나고, 질의와 일치하는 키워드는 하이라이트됩니다.

● 유사도 점수 시각화: 각 청크의 유사도를 0 에서 1 로 정규화하고, 색상 막대 그래프로

표현하여 결과 품질을 직관적으로 파악할 수 있습니다.

● 문서 분포 차트: 파이 차트나 막대 차트를 사용하여 검색 결과가 어떤 문서에서 왔는지

시각화하고, 특정 문서를 클릭하여 필터링할 수 있습니다.



6. 결론 및 향후 계획

6.1. 프로젝트 성과

본 프로젝트는 RAG(Retrieval-Augmented Generation) 기반 정부나라장터 입찰공고 분석

시스템을 개발하는 과정이었습니다. 4 인의 팀원이 협력하여 프로덕션 수준의 시스템을

성공적으로 구축하였습니다.

6.1.1. 기술적 성과

시스템 아키텍처는 계층화된 설계를 성공적으로 구현하여 모듈의 독립성과 유지보수성을

확보하였습니다.

● 데이터 저장 계층: 문서 원본, 벡터, 대화 이력을 위한 2 개의 SQLite 와 1 개의 FAISS

데이터베이스로 구성되었습니다.

● 데이터 접근 계층: 각 DB 에 대응하는 관리 클래스를 통해 SQL 쿼리를

추상화하였습니다.

● 비즈니스 로직 계층: 문서 처리, 임베딩 생성, 검색, LLM 응답 생성 등 핵심 기능을

모듈화하였습니다.

● 사용자 인터페이스 계층: Streamlit 기반의 직관적인 웹 애플리케이션을 제공합니다.

문서 처리 파이프라인은 완전 자동화되었으며 다음과 같은 성과를 거두었습니다.

● 중복 제거: SHA-256 해시 기반으로 2 건의 중복 문서를 성공적으로 감지 및 제거하여

저장 공간과 임베딩 비용을 절감하였습니다.

● 전처리 효율성: PyMuPDF4LLM 을 사용한 Markdown 변환 및 3 단계 전처리 과정을

통해 원본 대비 평균 21.5%의 토큰 절약을 달성하였습니다.

임베딩 및 벡터 저장소는 확장 가능한 구조를 갖추었습니다.

● 임베딩 모델: OpenAI embedding-3-small 모델을 사용하여 1536 차원 벡터를

생성합니다.

● 벡터 저장소: FAISS IndexFlatL2 인덱스를 사용하여 정확한 최근접 이웃 검색을

보장합니다.

● 청킹 전략: RecursiveCharacterTextSplitter 를 사용하여 청크 크기 1500 토큰, 오버랩

300 토큰으로 컨텍스트를 보존합니다.

● 메타데이터: 파일 해시, 페이지 번호, 청크 인덱스 등 포괄적인 메타데이터를 첨부하여

출처 추적 및 재현성을 보장합니다.

다단계 검색 시스템은 정밀도(Precision)와 재현율(Recall)의 균형을 달성하였습니다.

● 1 차 광범위 검색: 전체 DB 대상 유사도 검색



● 2 차 심층 검색: file_hash 필터링을 적용하여 특정 문서의 상세 내용을 탐색

LLM 통합은 최신 모델을 활용하여 고품질 응답을 제공합니다.

● 기본 모델: gpt-5-mini 를 채택하여 빠른 응답 속도와 낮은 비용을 실현하였습니다.

● 컨텍스트 유지: ConversationSummaryMemory 를 구현하여 긴 대화에서도 토큰 한도를

준수하며 컨텍스트를 유지합니다.

평가 시스템은 객관적인 품질 측정을 가능하게 합니다.

● 평가 지표: LLM Judge 기반으로 Faithfulness (신뢰도), Context Relevance (컨텍스트

관련성), Answer Accuracy (답변 정확도), Answer Relevance (답변 관련성)의 4 대

지표로 성능을 평가합니다.

사용자 인터페이스는 직관성과 기능성을 갖추었습니다.

● UI/UX: Streamlit 기반의 채팅 인터페이스, 세션 관리, 스트리밍 응답, 검색 결과 시각화

기능을 제공합니다.

6.1.2. 정량적 지표

시스템의 정량적 성능 지표는 다음과 같습니다.

FAISS 검색 시간 수천 벡터 대상 최근접 이웃 검색 10ms ~ 50ms

DB 응답 시간 ChatHistoryDB 메시지 조회 시간 10ms 이내

응답 생성 시간 gpt-5-mini 평균 응답 시간 2 초 ~5 초

중복 제거 성과 감지 및 제거된 중복 문서 수 2 건

비용 절감 효과 문서당 임베딩 비용 절감 (USD) 0.000193

전처리 효율성 원본 대비 평균 토큰 절약률 21.5%

구분 지표 내용 정량적 성과 출처



6.2. 핵심 인사이트

6.2.1. RAG 시스템 설계 원칙

RAG 시스템의 성공은 각 단계의 품질 누적에 달려 있습니다.

● 균형 잡힌 전처리: 노이즈를 제거하면서도 의미를 보존하는 균형이 중요하며, 과도한

전처리는 정보 손실을 초래할 수 있습니다.

● 효과적인 청킹: 일률적인 분할보다는 페이지 경계나 의미 단위를 존중하는 접근이

효과적입니다.

● 다단계 검색: 1 차 검색으로 후보를 좁히고 2 차 검색으로 정밀도를 높이는 다단계

접근이 우수한 결과를 제공합니다.

● 메타데이터의 중요성: 파일 해시, 청크 해시, 설정 해시는 재현성과 자동 재처리를

가능하게 합니다.

● 한국어 처리 고려: 토크나이저가 한국어 텍스트를 과도하게 분할하는 경향을 고려하여

영어 대비 20% ~ 30% 더 큰 청크 크기를 사용하는 것이 적절합니다.

6.2.2. 팀 협업 및 프로젝트 관리

● 인터페이스 우선 설계: 프로젝트 초기에 각 모듈의 인터페이스를 문서화하고 합의하여

병렬 개발과 원활한 통합을 가능하게 하였습니다.

● 점진적 통합: 모든 모듈 완성 후 통합하는 빅뱅 방식 대신, 주차별로 완성된 모듈을

통합하고 엔드투엔드 테스트를 수행하여 위험을 분산시켰습니다.

6.2.3. 기술 선택의 트레이드오프

● OpenAI 모델 의존성: 강력한 성능을 제공하지만, API 장애 및 비용 증가 위험을

완화하기 위해 LangChain 추상화를 활용하여 향후 오픈소스 모델 전환 가능성을

열어두었습니다.

● SQLite 의 한계: 초기 개발과 배포에는 적합하지만, 대규모 데이터 처리 및 동시 쓰기

제한으로 인해 프로덕션 환경으로 확장 시 PostgreSQL 등으로 마이그레이션을

고려해야 합니다.

● FAISS IndexFlatL2: 정확성을 보장하지만, 벡터 수 증가 시 검색 시간이 선형적으로

증가하여 대규모 데이터(~ 10 만 개 이상)에서는 IndexIVFFlat 이나 IndexHNSW 와 같은

근사 검색(Approximate Nearest Neighbor) 알고리즘으로 전환이 필요합니다.



6.3. 한계점 및 개선 과제

6.3.1. 현재 시스템의 제약

● 검색 품질: 단순 유사도 기반 검색은 질의 의도와 맞지 않는 결과를 반환할 수 있어,

의도 분류나 엔티티 인식을 추가하여 질의 이해도를 높여야 합니다.

● 한국어 처리 품질: 영어 중심 모델의 한계로 인해 전문 용어 처리가 미흡하여, 한국어

특화 모델 파인튜닝이 필요합니다.

● 확장성: 현재 시스템은 소규모 데이터에 최적화되어 있으며, 실제 나라장터 규모의

데이터(~ 수만 건)를 처리하려면 PostgreSQL 및 IndexHNSW 등으로의 업그레이드가

필수적입니다.

● 보안 및 권한 관리: 현재 단일 사용자 환경을 가정하고 있으며, 실제 배포를 위해서는

인증, 역할 기반 접근 제어(RBAC), API 키 보호 등의 보안 기능 구현이 필요합니다.

6.3.2. 사용자 피드백 부재

● 실사용자 테스트 부족: 프로젝트 기간 동안 팀 내부 테스트에만 의존하였으므로, 향후

파일럿 사용자 그룹을 모집하여 정성적 및 정량적 피드백을 수집해야 합니다.

● 도메인 전문가 검증 필요: 입찰 공고 분석의 전문성 확보를 위해 조달 전문가나 법률

자문을 통한 시스템 출력의 검토 및 개선이 필요합니다.

6.4. 향후 개발 계획

6.4.1. 단기 계획 (1 개월 이내)

● 사용자 테스트: 파일럿 사용자를 통한 사용성, 정확성, 유용성 평가 및 피드백 수집.

● 검색 품질 개선: 하이브리드 검색(BM25 + 벡터 검색) 및 재순위화(Re-ranking) 모델을

도입하여 검색 정밀도 향상.

● 프롬프트 최적화: Few-shot 예제, Chain-of-Thought (사고의 흐름) 프롬프팅 적용.

● 캐싱 메커니즘 구현: 질의와 응답을 캐싱하여 LLM 호출 중복 방지 및 비용 절감.

6.4.2. 중기 계획 (3 개월 이내)

● 한국어 특화 모델 파인튜닝: 입찰 공고 도메인 한국어 코퍼스를 활용하여 LLaMA,

Mistral, Solar 등 오픈소스 LLM 을 파인튜닝.

● DB 마이그레이션: $SQLite$에서 PostgreSQL 로 마이그레이션하여 확장성 확보.

● FAISS 인덱스 업그레이드: IndexIVFFlat 또는 IndexHNSW 적용을 통한 대규모 벡터

검색 성능 최적화.

● 멀티모달 지원: GPT-4V 또는 LLaVA 모델 통합, OCR 및 표 구조 인식을 통해 이미지와

표 데이터 처리.

● 보안 기능 구현: OAuth 2.0 기반 인증, RBAC, API 키 보호, 감사 로깅 구현.



6.4.3. 장기 계획 (6 개월 이상)

● 자동 문서 업데이트 시스템 구축: 나라장터 API 연동, 스케줄러를 통한 공고 자동 수집

및 임베딩 업데이트.

● 대화형 분석 도구 개발: 자연어 질의를 SQL 또는 Python 코드로 변환하여 데이터 탐색

및 시각화 기능 제공.

● 추천 시스템 통합: 사용자의 질의 및 관심 분야를 학습하여 새로운 공고를 능동적으로

추천.

● 엔터프라이즈 기능: 팀 단위 협업, 워크플로우 자동화, 대시보드 제공 등 조직 차원의

사용 지원.

6.5. 감사의 말

본 프로젝트는 코드잇 AI 4 기 교육 과정의 일환으로 수행되었으며, 교육팀의 체계적인

커리큘럼, 멘토님들의 기술적 조언, 그리고 팀원들의 전문성과 헌신 덕분에 성공적으로

마무리될 수 있었습니다.

● 팀원들의 헌신:

● 신승목님 (데이터 엔지니어): 견고한 데이터 파이프라인 및 DB 구축.

● 김명환님 (머신러닝 엔지니어): 임베딩 처리, FAISS 인덱스 최적화, 다단계 검색

시스템 완성.

● 이민규님 (AI 리서처): LLM 통합, 프롬프트 엔지니어링, 평가 시스템 구축.

● 오형주님 (프론트엔드 엔지니어): Streamlit 기반 UI 개발 및 모든 모듈 통합.

오픈소스 커뮤니티와 도구를 제공한 개발자들에게 깊은 감사를 표하며, 본 프로젝트가 RAG

시스템 구축을 고민하는 이들에게 기여하고 AI 기술 민주화에 보탬이 되기를 바랍니다.


